By Topic

A Hybrid Simulated Annealing Algorithm for Nonslicing VLSI Floorplanning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianli Chen ; Center for Discrete Math. & The oretical Comput. Sci., Fuzhou Univ., Fuzhou, China ; Wenxing Zhu ; Ali, M.M.

Floorplanning in very large scale integrated-circuit (VLSI) design is the first phase in the process of designing the physical layout of a chip. This makes the floorplanning problem of paramount importance, since it determines the performance, size, yield, and reliability of VLSI chips . From the computational point of view, the VLSI floorplanning is an NP-hard problem. In this paper, we present a hybrid simulated annealing algorithm (HSA) for nonslicing VLSI floorplanning. The HSA uses a new greedy method to construct an initial B*-tree, a new operation on the B*-tree to explore the search space, and a novel bias search strategy to balance global exploration and local exploitation. Experimental results on Microelectronic Center of North Carolina (MCNC) benchmarks show that the HSA can quickly produce optimal or nearly optimal solutions for all the tested problems.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:41 ,  Issue: 4 )