By Topic

On the Limit of the Output Capacitor Reduction in Power-Factor Correctors by Distorting the Line Input Current

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lamar, D.G. ; Grupo de Sist. Electronicos de Alimentacion, Univ. de Oviedo, Oviedo, Spain ; Sebastian, J. ; Arias, M. ; Fernandez, A.

Active power-factor correctors (PFCs) are needed to design ac-dc power supplies with universal input voltage range and sinusoidal input current. The classical method to control PFCs consists in two feedback loops and an analog multiplier. Hence, the input current is sinusoidal and it is in-phase with the input voltage. However, a bulk capacitor is needed to balance the input and the output power. Due to its high capacitance, an electrolytic capacitor is traditionally used as a bulk capacitor in PFCs. As a consequence, the lifetime of the ac-dc power supply is limited by the electrolytic capacitor's, which becomes insufficient to some applications (e.g., high-brightness LEDs). This paper proposes a reduction of the output voltage ripple (which allows reduction of the output capacitance) by distorting the input current, but maintaining the harmonic continent compatible with EN 61000-3-2 regulations. The limits of this output capacitor reductions are deduced. Also, a control strategy based on a low-cost microcontroller is developed to put the proposed study into practice. Finally, the theoretical results are validated in a 500-W prototype.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 3 )