By Topic

Optimizing PET DOI Resolution With Crystal Coating and Length

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Samuel Salvador ; IPHC, Universit? de Strasbourg, Strasbourg, France ; Jacques Wurtz ; David Brasse

In the last few years, one of the main research programs for PET systems has been the improvement of spatial resolution using Depth Of Interaction (DOI) information. In the context of developing a new PET system dedicated to small animals with axially oriented LYSO crystals and DOI capability, we have investigated the influence of the crystal coating and its length on the DOI resolution. The proposed PET system is composed of four detection modules arranged around the animal. Each module consists in 768 LYSO crystals read at both ends by multichannel plate photodetectors. The particular geometry combined with an inner diameter of 61.2 mm, lead to high detection efficiency close to the system solid angle. The LYSO crystal is chosen for its light yield of 33 ph/keV and its attenuation length of 11.2 mm at 511 keV. To obtain a transverse spatial resolution of 1 mm, the section of the crystal was fixed to 1.5 mm. To achieve a DOI resolution close to 1 mm, measurements have been performed on different LYSO crystal coatings with a length ranging from 25 mm to 35 mm. Each crystal is positioned on an xy translation stage and read out at both ends by H3164-10 Hamamatsu PMTs. The DOI information is then derived every 0.5 mm along the crystal extent. The use of an electronic collimation leads to a 22Na source beam size of (1.58 ± 0.04) mm reaching the crystal. The optimized coating in terms of packing fraction and DOI resolution is found to be a mixture made with 30% TiO2 powder in a PMMA binder. With this appropriate coating, an average DOI resolution of (0.82 ± 0.13) mm can be achieved with a 25 mm crystal length using a 20% photopeak energy window. The resolution degrades to (1.39 ± 0.16) mm when a wide-open energy window is used. Those values are corrected for the source beam size. Using this experimental proposal, a matrix of LYSO crystals has been built reaching a packing fraction of 93%. In this study, we demonstrate that us- - ing a 1.5 × 1.5 × 25 mm3 LYSO crystal, a DOI resolution of less than a millimeter can be achieved while keeping a high packing fraction for a system detection efficiency close to 15%.

Published in:

IEEE Transactions on Nuclear Science  (Volume:57 ,  Issue: 5 )