By Topic

A Magnetoelectric Composite Energy Harvester and Power Management Circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ping Li ; Key Laboratory for Optoelectronic Technology and System, Ministry of Education, College of Optoelectronic Engineering , Chongqing University, Chongqing, China ; Yumei Wen ; Chaobo Jia ; Xinshen Li

This paper proposes a ferro-nickel (Fe-Ni)/PZT H-type fork magnetoelectric (ME) composite structure and an energy management circuit for ME energy harvesting. The resonant fork composite structure with a high Q value shows a higher ME voltage coefficient and a stronger power coefficient compared with the conventional rectangular composite structure. The resonant fork composite structure can obtain an output power of 61.64 μW at an ac magnetic field of 0.2 Oe. The ME sensitivity of the fork structure reaches 11 V/Oe. For weak magnetic-field environment, an active magnetic generator and a magnetic coil antenna underground are used for producing an ac magnetic field of 0.2-1 Oe at a distance of 25-50 m. A management circuit of the power supply with matching circuit, energy-storage circuit, and instantaneous-discharge circuit is developed suitable for weak electromagnetic energy harvesting. The management circuit can continuously accumulate weak energy from the fork composite structure for a long period and provide a high-power output in a very short cycle. While the voltage across the storage supercapacitor is over 0.36 V, the instantaneous-discharge circuit can drive a wireless sensor network node with an output power of 75 mW at a distance of over 60 m.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:58 ,  Issue: 7 )