By Topic

Intelligent Memetic Algorithm Using GA and Guided MADS for the Optimal Design of Interior PM Synchronous Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dongsu Lee ; Dept. of Electr. Eng., Dong-A Univ., Busan, South Korea ; Seungho Lee ; Jong-Wook Kim ; Cheol-Gyun Lee
more authors

Optimal design of an electric machine based on finite element analysis (FEA) calls for much longer computation time for maintaining high accuracy. In order to compensate for the excessive computation time and guarantee the reliable convergence to a global optimum, an intelligent memetic algorithm is newly implemented by combining a genetic algorithm (GA) and the guided mesh adaptive direct search (MADS) that employs an extension search step after the poll step. The effectiveness of guided MADS (GMADS) alone has been verified through the function optimization, and the proposed memetic algorithm is applied to an optimal design of an interior permanent magnet synchronous machine (IPMSM), of which the cost function has many local minima. Optimization results confirm that the proposed method locates an acceptable solution more effectively maintaining the reliable accuracy.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 5 )