We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Single-Channel Source Separation Using EMD-Subband Variable Regularized Sparse Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bin Gao ; Sch. of Electr., Electron. & Comput. Eng., Newcastle Univ., Newcastle upon Tyne, UK ; Woo, W.L. ; Dlay, S.S.

A novel approach to solve the single-channel source separation (SCSS) problem is presented. Most existing supervised SCSS methods resort exclusively to the independence waveform criteria as exemplified by training the prior information before the separation process. This poses a significant limiting factor to the applicability of these methods to real problem. Our proposed method does not require training knowledge for separating the mixture and it is based on decomposing the mixture into a series of oscillatory components termed as the intrinsic mode functions (IMFs). We show, in this paper, that the IMFs have several desirable properties unique to SCSS problem and how these properties can be advantaged to relax the constraints posed by the problem. In addition, we have derived a novel sparse non-negative matrix factorization to estimate the spectral bases and temporal codes of the sources. The proposed algorithm is a more complete and efficient approach to matrix factorization where a generalized criterion for variable sparseness is imposed onto the solution. Experimental testing has been conducted to show that the proposed method gives superior performance over other existing approaches.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 4 )