Cart (Loading....) | Create Account
Close category search window
 

An Optical Method for Pretilt and Profile Determination in LCOS VAN Displays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cerrolaza, B. ; Dept. of Tecnol. Fotonica, Univ. Politec. de Madrid, Madrid, Spain ; Geday, M.A. ; Quintana, X. ; Otón, J.M.

Pretilt angle and cell thickness are two extremely important parameters in predicting the behavior of vertically aligned negative nematic liquid crystal (LC) displays. The accurate estimation of pretilt angle and cell thickness is not a trivial task when these devices work in reflective mode, as in liquid crystal on silicon (LCOS) vertically aligned nematic (VAN) displays. Usual experimental setups are based on the proportionality between the retardation of the polarization components of the incident light and the product effective birefringence times thickness. However, any attempt to separate the two product variables is cancelled out by symmetry from reflection. This work shows a relatively simple method capable of separating both variables, allowing accurate, independent measurements of pretilt and thickness, as well as other configurations details, such as residual twist. A simulation model based on the properties of actual reflective displays has been developed. An experimental setup specifically designed for measuring LCOS VAN cells has been prepared. Initial comparisons between experimental measurements of intensity and theoretical results showed some discrepancies that could be explained assuming that the LC profile contains a residual twist from the manufacturing process. Including that twist in the model, an excellent agreement between theory and experiment has been achieved. Matching simulations and experimental results yield separate determinations of pretilt angle and thickness, and give good estimates for the residual twist angle.

Published in:

Display Technology, Journal of  (Volume:7 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.