By Topic

A Framework for Evaluating Automatic Classification of Underlying Causes of Disturbances and Its Application to Short-Circuit Faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
de Morais, J.M. ; Signal Process. Lab. (LaPS), Fed. Univ. of Para (UFPA), Belem, Brazil ; Pires, Y. ; Cardoso, C. ; Klautau, A.

Most works in power systems event classification concern classifying an event according to the morphology of the corresponding waveform. An important and even more difficult problem is the classification of the event underlying cause. However, the lack of labeled data is more problematic in this second scenario. This paper proposes a framework based on frame-based sequence classification (FBSC), the Alternative Transient Program (ATP), and a public dataset to advance research in this area. As a proof of concept, a thorough evaluation of automatic classification of short circuits in transmission lines is discussed. Simulations with different preprocessing (e.g., wavelets) and learning algorithms (e.g., support vector machines) are presented. The results can be reproduced at other sites and elucidate several tradeoffs when designing the front end and pattern recognition stages of a sequence classifier. For example, when considering the whole event in an offline scenario, the combination of the raw front end and a decision tree is competitive with wavelets and a neural network.

Published in:

Power Delivery, IEEE Transactions on  (Volume:25 ,  Issue: 4 )