By Topic

Adaptive robust control of uncertain dynamical systems with multiple time-varying delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
H. Wu ; Prefectural University of Hiroshima, Japan

The problem of adaptive robust stabilisation is considered for a class of dynamical systems with multiple time-varying delayed state perturbations, time-varying uncertain parameters, and external disturbances. It is assumed that the upper bounds of the delayed state perturbations, uncertainties and external disturbances are unknown, and that the time-varying delays are any non-negative continuous and bounded functions. In particular, it is not required that the derivatives of time-varying delays have to be less than one. For such a class of uncertain time-delay systems, a new method is presented whereby a class of memoryless continuous adaptive robust state feedback controllers is proposed. By employing a quasi-Lyapunov function, it is shown that the solutions of uncertain time-delay systems can be guaranteed to be uniformly exponentially convergent towards a ball which can be as small as desired. In addition, since the proposed adaptive robust state feedback controllers are completely independent of time delays, the results obtained in the study may be also applicable to a class of dynamical systems with uncertain time delays. Finally, a numerical example is given to demonstrate the validity of the results.

Published in:

IET Control Theory & Applications  (Volume:4 ,  Issue: 9 )