By Topic

A hybrid constrained semi-supervised clustering algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xuemei Li ; Dept. of Comput. Sci. & Technol., Yantai Univ., Yantai, China ; Lihong Wang ; Yibin Song ; Xianjia Zhao

A hybrid constrained semi-supervised clustering algorithm(HCC) is proposed, both labeled data and pairwise constraints are concerned in clustering a given dataset to get a better clustering result. This paper gives theoretical derivation and experiments on UCI data sets, and the experiments show that the quality of clustering using two kinds of constraint information is better than only one kind of labeled data information. Additionally, HCC is more stable than other algorithms such as CCL and SAP.

Published in:

Fuzzy Systems and Knowledge Discovery (FSKD), 2010 Seventh International Conference on  (Volume:4 )

Date of Conference:

10-12 Aug. 2010