By Topic

Damaged ship unsinkability classification model based on fuzzy support vector machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yue Hou ; Ship survivability Res. office, Naval Univ. of Eng., Wuhan, China ; Jin-yun Pu

When the ship is damaged after weapon attack, it is necessary for commanders to recognise its unsinkability grade quickly. Through unsinkability classification, we can know whether the ship will sink or not and its sinking probability. The unsinkability classification is a N-class pattern recognition problem. The fuzzy support vector machine (FSVM) is used to distinguish a certain unsinkability grade from other unsinkability grades firstly. Concerning the definition of fuzzy membership is critical in FSVM, the support vector data description (SVDD) is used to found fuzzy membership function. Through samples test, we found that FSVM of which fuzzy membership calculated through SVDD has better classification efficiency and precision.

Published in:

Fuzzy Systems and Knowledge Discovery (FSKD), 2010 Seventh International Conference on  (Volume:4 )

Date of Conference:

10-12 Aug. 2010