By Topic

Cropland parcels extraction based on texture analysis and multi-spectral image classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianhong Liu ; State Key Lab. of Earth Surface Processes & Resource Ecology, Beijing Normal Univ., Beijing, China ; Wenquan Zhu ; Minjie Mou ; Lingli Wang

Extracting cropland parcels from high-resolution remote sensing images is an important issue for dynamic land-use monitoring, precision agriculture and other fields. However, cropland spectra change frequently in time and spatial space. The application of multi-spectral image classification in cropland extraction, not only leads to misclassification with other vegetation easily, but also results in broken parcels caused by salt and pepper effect. Texture is an important feature of satellite images, which takes into account pixel gray scale difference and the spatial relationship between neighboring pixels. In order to overcome the impact of spectral variability, this paper presents an advanced cropland parcel extraction method based on texture analysis and multi-spectral image classification. Test on an ALOS (Advanced Land Observation Satellite) image shows that this method can effectively reduce the impact of spectral variations and obtain satisfactory results. But there still has some aspects which should be further improved in the future study, including: (1) some "noise" polygons still exist because the filter can not eliminate all the noise pixels completely; and (2) parcels generated by this approach can not reflect their subtle internal difference, such as inner boundary shaped by different crops.

Published in:

Geoinformatics, 2010 18th International Conference on

Date of Conference:

18-20 June 2010