By Topic

The comparison of different methods to measure leaf area index of forests in Maoershan Mountain, Northeastern China

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bailing Xing ; Int. Inst. for Earth Syst. Sci., Nanjing Univ., Nanjing, China ; Weimin Ju ; Gaolong Zhu ; Xianfeng Li
more authors

Different optical instruments are currently available for measuring LAI such as LAI 2000 Plant Canopy Analyser (LAI-2000), Tracing Radiation and Architecture of Canopies (TRAC) and Digital Hemispherical Photography (DHP). Their applicability varies in different ecosystems. This study was devoted to compare LAI measured using four different methods (LAI measured by DHP, LAI measured by TRAC, LAI calculated using effective LAI measured by LAI-2000 and clumping index measured by DHP, and LAI calculated using effective LAI measured by LAI-2000 and clumping index measured by TRAC) in the Maoershan experimental forest farm of Northeast Forestry University located in Shangzhi city of Heilongjiang province. Methods used to measure LAI have considerable effects on observed LAI. The means of LAI measured by four different methods are 3.15, 4.73, 3.97, and 4.24 and corresponding standard deviations are 1.54, 2.39, 1.82, and 1.75, respectively. According to previous studies, the combination of LAI-2000 with TRAC can give the most reliable measurements of LAI. Therefore, DHP tends to underestimate LAI at this area, especially for dense canopies while TRAC tends to overestimate slightly LAI for dense canopies. The fitting of LAI measured using four different methods with normalized difference vegetation index (NDVI) and reduced simple ratio (RSR) calculated from TM data acquired on June 24, 2009 indicated that RSR is a better predictor of LAI than NDVI in this study area. The agreements between measured and estimated LAI using the best fitted models are 58%, 70%, 57% and 68% for these four different methods. Corresponding root mean square errors (RMSE) are 0.80, 0.85, 0.88, and 0.75, respectively. The regional means of LAI retrieved using the empirical models established on the basis of RSR and LAI measured with four different methods are 3.47, 5.26, 4.31, and 4.68, respectively, indicating that if DHP is used as a surrogate of TRAC and LAI-2000, LAI might be underestimated by ab- - out 25.7% in this area.

Published in:

Geoinformatics, 2010 18th International Conference on

Date of Conference:

18-20 June 2010