By Topic

Cultural-Based Multiobjective Particle Swarm Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daneshyari, M. ; Dept. of Electr. & Comput. Eng. ing, Oklahoma State Univ., Stillwater, OK, USA ; Yen, G.G.

Multiobjective particle swarm optimization (MOPSO) algorithms have been widely used to solve multiobjective optimization problems. Most MOPSOs use fixed momentum and acceleration for all particles throughout the evolutionary process. In this paper, we introduce a cultural framework to adapt the personalized flight parameters of the mutated particles in a MOPSO, namely momentum and personal and global accelerations, for each individual particle based upon various types of knowledge in “belief space,” specifically situational, normative, and topographical knowledge. A comprehensive comparison of the proposed algorithm with chosen state-of-the-art MOPSOs on benchmark test functions shows that the movement of the individual particle using the adapted parameters assists the MOPSO to perform efficiently and effectively in exploring solutions close to the true Pareto front while exploiting a local search to attain diverse solutions.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:41 ,  Issue: 2 )