By Topic

Iron and Magnet Losses and Torque Calculation of Interior Permanent Magnet Synchronous Machines Using Magnetic Equivalent Circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tariq, A.R. ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Nino-Baron, C.E. ; Strangas, E.G.

We present a faster and simpler approach for the calculation of iron and magnet losses and torque of an interior permanent-magnet synchronous machine (IPMSM) than finite-element methods (FEM). It uses a magnetic equivalent circuit (MEC) based on large elements and takes into account magnetic saturation and magnet eddy currents. The machine is represented by nonlinear and constant reluctance elements and flux sources. Solution of the nonlinear magnetic circuit is obtained by an iterative method. The results allow the calculation of losses and torque of the machine. Due to the approximations used in the formulation of the MEC, this method is less accurate but faster than nonlinear transient magnetic FEM, and is more useful for the comparison of different machine designs during design optimization.

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 12 )