Cart (Loading....) | Create Account
Close category search window
 

Design and Optimization of a Novel Bored Biplanar Permanent-Magnet Assembly for Hybrid Magnetic Resonance Imaging Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tadic, T. ; Dept. of Phys., Univ. of Alberta, Edmonton, AB, Canada ; Fallone, B.G.

We present a novel design for a biplanar permanent-magnet assembly suitable for use in hybrid magnetic resonance imaging (MRI) systems. The key feature of our design is a large cylindrical hole that is longitudinally bored through the entire magnet assembly. The presence of the bore permits the potential inclusion of additional peripheral devices within or near the magnet structure that may benefit from being placed along, or oriented parallel to, the main magnetic field. In particular, the magnet assembly can be considered for use in an integrated system consisting of a 6 MV medical linear accelerator (linac) coupled to an MRI system for state-of-the-art real-time image-guided adaptive radiotherapy. We use magnetic field calculations based on the finite-element method (FEM) to quantify the detrimental effects of the bore on the field homogeneity in the imaging volume for pole-piece designs found commonly in industry. We then demonstrate that shape optimization of the pole pieces yields novel pole designs that lead to suitable levels of field homogeneity. We examined the resultant magnetic field within the bore for the optimized design and found that it has maximum field homogeneity.

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 12 )

Date of Publication:

Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.