By Topic

A Novel 3-DOF Axial Hybrid Magnetic Bearing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fang Jiancheng ; Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology,, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics,, Beijing , China ; Sun Jinji ; Liu Hu ; Tang Jiqiang

In this paper, we propose a novel structure of permanent-magnet-biased axial hybrid magnetic bearing. It has four segments of poles to control three degrees of freedom (3-DOF). Based on the inner and outer air gaps in conventional axial magnetic bearings, a novel air gap, called the subsidiary air gap, is constructed between the permanent magnet and the stator poles. This air gap separates the bias flux paths from the control flux paths. As a result, lower power loss of the axial magnetic bearing can be achieved due to lower magnetic reluctance of the control flux paths. Furthermore, by means of the equivalent magnetic circuit method and the 3-D finite-element method (FEM), we analyze and model the 3-DOF axial hybrid magnetic bearing. Experimental results show that the presented axial magnetic bearing has good control performance and little coupling among X, Y, and Z directions. However, the rotational power loss will be large at high speed because of the alternating flux density in the thrust plate produced by four segments of stator poles. Therefore, we propose a novel stator, named the parallel-slot stator, and novel thrust plate to reduce the rotational power loss effectively, which is assembled by DT4 and nanocrystalline materials. Meanwhile, we have designed and assembled an axial hybrid magnetic bearing prototype with the novel stator and thrust plate, which is applied in the five-degrees-of-freedom reaction flywheel system with angular momentum of 15 Nms at 5000 r/min. It is validated by the experimental results.

Published in:

IEEE Transactions on Magnetics  (Volume:46 ,  Issue: 12 )