Cart (Loading....) | Create Account
Close category search window
 

Embedded Microstructure Fabrication Using Developer-Permeability of Semi-Cross-Linked Negative Resist

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hirai, Y. ; Dept. of Micro Eng., Kyoto Univ., Kyoto, Japan ; Sugano, K. ; Tsuchiya, T. ; Tabata, O.

This paper reports on a novel and simple 3-D fabrication technique of microstructures embedded in a single-layer negative resist. The proposed technique allows one the fabrication of an embedded microstructure with a single exposure and the subsequent development process. The unique feature of the proposed fabrication technique is the development method which enables the rapid fabrication of polymer-based microfluidic systems with relatively large areas but with micrometer-sized features. For example, features of microchannels, on the order of 100 m in width and 50 mm in length, sufficient for microfluidic systems, were successfully fabricated with a relatively short (<; 20 min) development time. These features are realized by the interesting physical response of the top-membrane to the developer; the developer permeates through the top-membrane region made of semi-cross-linked photoresist, and the permeated developer dissolves the uncross-linked photoresist at the same time. As a step toward the practical use of the proposed development method, process parameter sets (exposure dose, postexposure bake (PEB) time, and temperature) related to the cross-linking reaction of the top-membrane region were investigated by employing the cross-linking reaction model describing the chemical reaction during the UV exposure and the PEB. Through a series of experiments, 1) a criterion of process parameter sets for the fabrication of centimeter-long embedded microchannels was obtained, and 2) the applicability to polymer-based microfluidic systems was successfully demonstrated.

Published in:

Microelectromechanical Systems, Journal of  (Volume:19 ,  Issue: 5 )

Date of Publication:

Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.