By Topic

A Substrate-Integrated Evanescent-Mode Waveguide Filter With Nonresonating Node in Low-Temperature Co-Fired Ceramic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lin-Sheng Wu ; Center for Microwave and RF Technologies (CMRFT), Shanghai Jiao Tong University (SJTU), Shanghai, China ; Xi-Lang Zhou ; Wen-Yan Yin ; Liang Zhou
more authors

A cross-coupled substrate-integrated evanescent-mode waveguide filter is proposed with a quasi-elliptic frequency response. It is realized with a coplanar waveguide as a nonresonating node to provide an equivalent negative coupling coefficient. The filter prototype is developed with folded and ridge substrate-integrated waveguides (SIWs) in low-temperature co-fired ceramic. Since evanescent-mode and cross-coupling techniques are used in the design of filters, about 90% area reduction and more than 60% volume reduction are achieved, in comparison with conventional planar cavity-coupled SIW filters. Their unloaded Q factor is also improved. In particular, the spurious suppression characteristic of the direct-coupled evanescent-mode waveguide filter is kept by the cross-coupled filter with the nonresonating node structure. All these merits are demonstrated numerically, as well as experimentally, with good agreement obtained between the measured and simulated S-parameters.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:58 ,  Issue: 10 )