By Topic

Fault-tolerant cube graphs and coding theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bruck, J. ; California Inst. of Technol., Pasadena, CA, USA ; Ching-Tien Ho

Hypercubes, meshes, tori, and Omega networks are well-known interconnection networks for parallel computers. The structure of those graphs can be described in a more general framework called cube graphs. The idea is to assume that every node in a graph with ql nodes is represented by a unique string of l symbols over GF(q). The edges are specified by a set of offsets, those are vectors of length l over GF(q), where the two endpoints of an edge are an offset apart. We study techniques for tolerating edge faults in cube graphs that are based on adding redundant edges. The redundant graph has the property that the structure of the original graph can be maintained in the presence of edge faults. Our main contribution is a technique for adding the redundant edges that utilizes constructions of error-correcting codes and generalizes existing ad hoc techniques

Published in:

Information Theory, IEEE Transactions on  (Volume:42 ,  Issue: 6 )