By Topic

Minimum complexity regression estimation with weakly dependent observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. S. Modha ; Dept. of Electr. & Comput. Eng., California Univ., San Diego, La Jolla, CA, USA ; E. Masry

The minimum complexity regression estimation framework (Barron, 1991; Barron and Cover, 1991 and Rissanen, 1989) is a general data-driven methodology for estimating a regression function from a given list of parametric models using independent and identically distributed (i.i.d.) observations. We extend Barron's regression estimation framework to m-dependent observations and to strongly mixing observations. In particular, we propose abstract minimum complexity regression estimators for dependent observations, which may be adapted to a particular list of parametric models, and establish upper bounds on the statistical risks of the proposed estimators in terms of certain deterministic indices of resolvability. Assuming that the regression function satisfies a certain Fourier-transform-type representation, we examine minimum complexity regression estimators adapted to a list of parametric models based on neural networks and by using the upper bounds for the abstract estimators, we establish rates of convergence for the statistical risks of these estimators. Also, as a key tool, we extend the classical Bernstein inequality from i.i.d. random variables to m-dependent processes and to strongly mixing processes

Published in:

IEEE Transactions on Information Theory  (Volume:42 ,  Issue: 6 )