By Topic

A coherent model for reliability of multiprocessor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Boesch, F. ; Dept. of Electr. Eng., Stevens Inst. of Technol., Hoboken, NJ, USA ; Gross, D. ; Suffel, C.

Graph G has perfectly reliable nodes and edges that are subject to stochastic failure. The network reliability R is the probability that the surviving edges induce a spanning connected subgraph of G. Analysis problems concern determining efficient algorithms to calculate R, which is known to be NP-hard for general graphs. Synthesis problems concern determining graphs that are, according to some definition, the most reliable in the class of all graphs having a given number of edges and nodes. In applications where the edges are perfectly reliable and the nodes are subject to failure, another measure (residual node connectedness reliability) is defined as the probability that the surviving nodes induce a connected subgraph of G. Referring to such a subset as an operating state, the measure is not coherent because a superset of an operating state need not be an operating state. This paper proposes a new definition of network reliability that handles the case of node failures; it is coherent. We determine many of its properties, and present several analysis and synthesis results

Published in:

Reliability, IEEE Transactions on  (Volume:45 ,  Issue: 4 )