Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

A Novel Approach for Failure Localization in All-Optical Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tapolcai, J. ; Dept. of Telecommun. & Media Inf., Budapest Univ. of Technol. (BME), Budapest, Hungary ; Bin Wu ; Pin-Han Ho ; Ronyai, L.

Achieving fast and precise failure localization has long been a highly desired feature in all-optical mesh networks. Monitoring trail (m-trail) has been proposed as the most general monitoring structure for achieving unambiguous failure localization (UFL) of any single link failure while effectively reducing the amount of alarm signals flooding the networks. However, it is critical to come up with a fast and intelligent m-trail design approach for minimizing the number of m-trails and the total bandwidth consumed, which ubiquitously determines the length of the alarm code and bandwidth overhead for the m-trail deployment, respectively. In this paper, the m-trail design problem is investigated. To gain a deeper understanding of the problem, we first conduct a bound analysis on the minimum length of alarm code of each link required for UFL on the most sparse (i.e., ring) and dense (i.e., fully meshed) topologies. Then, a novel algorithm based on random code assignment (RCA) and random code swapping (RCS) is developed for solving the m-trail design problem. The algorithm is verified by comparison to an integer linear program (ILP) approach, and the results demonstrate its superiority in minimizing the fault management cost and bandwidth consumption while achieving significant reduction in computation time. To investigate the impact of topology diversity, extensive simulation is conducted on thousands of random network topologies with systematically increased network density.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:19 ,  Issue: 1 )