By Topic

A Low-Power Shoe-Embedded Radar for Aiding Pedestrian Inertial Navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chenming Zhou ; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA ; James Downey ; Daniel Stancil ; Tamal Mukherjee

Navigation in global positioning system (GPS)-denied or GPS-inhibited environments such as urban canyons, mountain areas, and indoors is often accomplished with an inertial measurement unit (IMU). For portable navigation, miniaturized IMUs suffer from poor accuracy due to bias, bias drift, and noise. We propose to use a low-power shoe-embedded radar as an aiding sensor to identify zero velocity periods during which the individual IMU sensor biases can be observed. The proposed radar sensor can also be used to detect the vertical position and velocity of the IMU relative to the ground in real time, which provides additional independent information for sensor fusion. The impacts of the noise and interference on the system performance have been analyzed analytically. A prototype sensor has been constructed to demonstrate the concept, and experimental results show that the proposed sensor is promising for position and velocity sensing.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:58 ,  Issue: 10 )