By Topic

On the Selection of Optimal Feature Region Set for Robust Digital Image Watermarking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jen-Sheng Tsai ; Department of Computer Science and Information Engineering, Center for Research of E-life DIgital Technology (CREDIT), National Cheng Kung University, Tainan City, Taiwan ; Win-Bin Huang ; Yau-Hwang Kuo

A novel feature region selection method for robust digital image watermarking is proposed in this paper. This method aims to select a nonoverlapping feature region set, which has the greatest robustness against various attacks and can preserve image quality as much as possible after watermarked. It first performs a simulated attacking procedure using some predefined attacks to evaluate the robustness of every candidate feature region. According to the evaluation results, it then adopts a track-with-pruning procedure to search a minimal primary feature set which can resist the most predefined attacks. In order to enhance its resistance to undefined attacks under the constraint of preserving image quality, the primary feature set is then extended by adding into some auxiliary feature regions. This work is formulated as a multidimensional knapsack problem and solved by a genetic algorithm based approach. The experimental results for StirMark attacks on some benchmark images support our expectation that the primary feature set can resist all the predefined attacks and its extension can enhance the robustness against undefined attacks. Comparing with some well-known feature-based methods, the proposed method exhibits better performance in robust digital watermarking.

Published in:

IEEE Transactions on Image Processing  (Volume:20 ,  Issue: 3 )