By Topic

Numerical and Experimental Investigation on a Novel High-Voltage ( > 600-V) SOI LDMOS in a Self-Isolation HVIC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Xiaorong Luo ; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China (UESTC), Chengdu, China ; Bo Zhang ; Tianfei Lei ; Zhaoji Li
more authors

In order to achieve a high breakdown voltage (BV) and to realize self-isolation in high-voltage ICs (HVICs), a novel high-voltage n-channel lateral double-diffused MOS (LDMOS) with a buried n-island layer (BNIL) placed at the interface between a p-type silicon-on-insulator (SOI) layer and a buried-oxide (BOX) layer (BNIL SOI) is proposed. Its breakdown mechanism is investigated theoretically and experimentally. In a high-voltage blocking state, the ionized donors in the depleted n-islands make the electric field in the n-islands monotonously increase rather than decrease, as exhibited in the p-SOI region. This leads to an increase in the SOI layer bottom-interface field strength from 10 V/μm in the conventional p-SOI to 27 V/μm in the BNIL SOI, and as result, the electric field strength in the BOX, i.e., EI, increases from 30 to 82 V/μm. The holes collected in the space between the depleted n-islands help maintain the high EI. Consequently, the BV is enhanced. The p-SOI layer, along with the implanted n-drift region and discontinuous buried n-islands, is demonstrated to have enhanced self-isolation, which removes the need for deep dielectric isolation trenches in power ICs. The dependence of breakdown characteristics and isolation performance on the structure parameters has been analyzed. A test self-isolation SOI HVIC with a 660-V BNIL LDMOS has been fabricated in a 20-μm SOI layer over a 4-μm BOX layer, which has verified the feasibility and validity of the new concept.

Published in:

IEEE Transactions on Electron Devices  (Volume:57 ,  Issue: 11 )