By Topic

Band-Subset-Based Clustering and Fusion for Hyperspectral Imagery Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong-Qiang Zhao ; College of Automation, Northwestern Polytechnical University, Xi'an, China ; Lei Zhang ; Seong G. Kong

This paper proposes a band-subset-based clustering and fusion technique to improve the classification performance in hyperspectral imagery. The proposed method can account for the varying data qualities and discrimination capabilities across spectral bands, and utilize the spectral and spatial information simultaneously. First, the hyperspectral data cube is partitioned into several nearly uncorrelated subsets, and an eigenvalue-based approach is proposed to evaluate the confidence of each subset. Then, a nonparametric technique is used to extract the arbitrarily-shaped clusters in spatial-spectral domain. Each cluster offers a reference spectral, based on which a pseudosupervised hyperspectral classification scheme is developed by using evidence theory to fuse the information provided by each subset. The experimental results on real Hyperspectral Digital Imagery Collection Experiment (HYDICE) demonstrate that the proposed pseudosupervised classification scheme can achieve higher accuracy than the spatially constrained fuzzy c-means clustering method. It can achieve nearly the same accuracy as the supervised K-Nearest Neighbor (KNN) classifier but is more robust to noise.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:49 ,  Issue: 2 )