By Topic

Selecting the Individual Numerical Scale and Prioritization Method in the Analytic Hierarchy Process: A 2-Tuple Fuzzy Linguistic Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yucheng Dong ; Department of Organization and Management, School of Management, Xi’an Jiaotong University, Xi’an , China ; Wei-Chiang Hong ; Yinfeng Xu ; Shui Yu

The validity of the priority vector used in the analytic hierarchy process (AHP) relies on two factors: the selection of a numerical scale and the selection of a prioritization method. The traditional AHP selects only one numerical scale (e.g., the Saaty scale) and one prioritization method (e.g., the eigenvector method) for each particular problem. For this traditional selection approach, there is disagreement on which numerical scale and prioritization method is better in deriving a priority vector. In fact, the best numerical scale and the best prioritization method both rely on the content of the pairwise comparison data provided by the AHP decision makers. By defining a set of concepts regarding the scale function and the linguistic pairwise comparison matrices (LPCMs) of the priority vector and by using LPCMs to unify the format of the input and output of AHP, this paper extends the AHP prioritization process under the 2-tuple fuzzy linguistic model. Based on the extended AHP prioritization process, we present two performance measure criteria to evaluate the effect of the numerical scales and prioritization methods. We also use the performance measure criteria to develop a 2-tuple fuzzy linguistic multicriteria approach to select the best numerical scales and the best prioritization methods for different LPCMs. In this paper, we call this type of selection the individual selection of the numerical scale and prioritization method. We also compare this individual selection with traditional selection by using both random and real data and show better results with individual selection.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:19 ,  Issue: 1 )