Cart (Loading....) | Create Account
Close category search window
 

TAIEX Forecasting Based on Fuzzy Time Series and Fuzzy Variation Groups

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shyi-Ming Chen ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan ; Chao-Dian Chen

In this paper, we present a new method to forecast the daily Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy time series and fuzzy variation groups, where the main input factor is the previous day's TAIEX, and the secondary factor is either the Dow Jones, the NASDAQ, the M 1b, or their combination. First, the proposed method fuzzifies the historical training data of the TAIEX into fuzzy sets to form fuzzy logical relationships. Second, it groups the fuzzy logical relationships into fuzzy logical relationship groups (FLRGs) based on the fuzzy variations of the secondary factor. Third, it evaluates the leverage of the fuzzy variations between the main factor and the secondary factor to construct fuzzy variation groups. Fourth, it gets the statistics of the fuzzy variations appearing in each fuzzy variation group. Fifth, it calculates the weights of the statistics of the fuzzy variations appearing in each fuzzy variation group, respectively. Finally, based on the weights of the statistics of the fuzzy variations appearing in the fuzzy variation groups and the FLRGs, it performs the forecasting of the daily TAIEX. Because the proposed method uses both fuzzy variation groups and FLRGs to analyze in detail the historical training data, it gets higher forecasting accuracy rates to forecast the TAIEX than the existing methods.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:19 ,  Issue: 1 )

Date of Publication:

Feb. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.