By Topic

Mutual Coupling Reduction Between Microstrip Patch Antennas Using Slotted-Complementary Split-Ring Resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mohammed M. Bait-Suwailam ; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada ; Omar F. Siddiqui ; Omar M. Ramahi

A novel structure based on complementary split-ring resonators (SRRs) is introduced to reduce the mutual coupling between two coplanar microstrip antennas that radiate in the same frequency band. The new unit cell consists of two complementary SRR inclusions connected by an additional slot. This modification improves the rejection response in terms of bandwidth and suppression. The filtering characteristics of the band-gap structure are investigated using dispersion analysis. Using the new structure, it was possible to achieve a 10-dB reduction in the mutual coupling between two patch antennas with a separation of only 1/4 free-space wavelength between them. Since the proposed structures are broadband, they can be used to minimize coupling and co-channel interference in multiband antennas.

Published in:

IEEE Antennas and Wireless Propagation Letters  (Volume:9 )