By Topic

An Accurate Separation Estimation Algorithm for the Casimir Oscillator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Song Cui ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Yeng Chai Soh

A novel algorithm is proposed for estimating the separation gap in the Casimir oscillator. The Casimir oscillator is a nanoelectromechanical system actuated by the Casimir force that exists between two conductive metals. The Casimir oscillator has a great potential for use as a separation sensor at the nanometer scale. However, the complex nonlinear behavior of the Casimir oscillator makes it difficult to achieve an accurate separation estimation. The novel estimation algorithm proposed here is able to give an accurate separation estimate even when the nonlinearity is severe. Theoretical analysis and extensive simulations have been conducted to prove its effectiveness and robustness. In addition, this algorithm is also applicable to other estimation problems like the gap separation estimation in electrostatically actuated microelectromechanical systems (MEMS).

Published in:

Microelectromechanical Systems, Journal of  (Volume:19 ,  Issue: 5 )