Cart (Loading....) | Create Account
Close category search window
 

Design Consideration and Demonstration of Resonant-Cavity-Enhanced Quantum Dot Infrared Photodetectors in Mid-Infrared Wavelength Regime (3–5 \mu{\rm m} )

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Asano, T. ; Dept. of Chem. Eng. & Mater. Sci., Univ. of Southern California, Los Angeles, CA, USA ; Chong Hu ; Yi Zhang ; Mingguo Liu
more authors

Lattice-mismatched-strain-driven, defect-free, 3-D islands, dubbed self-assembled quantum dots (SAQDs), currently provide the most advanced platform for quantum-dot-based devices with successful applications to SAQD lasers and considerable potential for infrared detectors. For the latter, one of the limitations is the short optical path length owing to the difficulties in creation of large numbers of quantum dot layers without formation of structural defects arising from accumulated strain. This limitation can be considerably overcome by creation of an appropriate resonant cavity to enhance the optical field in the SAQD regions. In this paper, we demonstrate resonant-cavity-enhanced quantum dot infrared photodetectors in the mid-infrared (MIR, 3-5 μm ) regime. For effective enhancement, the SAQDs are designed to generate a very narrow peak (Δλ/λ ~ 10%) in the intraband photocurrent response in the MIR range utilizing short period superlattices as the quantum confining layers. Incorporating such SAQD layers at specific enhanced electric field regions within the resonant cavity comprising a two-pair GaAs/air-gap back mirror and a GaAs surface front mirror, we have obtained QDIP detectivity enhancement of ~ 8-12 times.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 10 )

Date of Publication:

Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.