By Topic

Effect of Inhomogeneous Broadening on Gain and Phase Recovery of Quantum-Dot Semiconductor Optical Amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jungho Kim ; Department of Information Display, Kyung Hee University, Seoul, Korea ; Christian Meuer ; Dieter Bimberg ; Gadi Eisenstein

We numerically investigate the effect of inhomogeneous broadening caused by quantum-dot (QD) size fluctuations on the gain and phase recovery of QD semiconductor optical amplifiers (SOAs). We establish 1088 coupled rate equations to simulate the carrier dynamics of the inhomogeneously broadened QD ensembles as inhomogeneous broadening increases. When all the QD ensembles are identical and inhomogeneous broadening becomes zero, eight coupled rate equations are solved for the homogeneous QDs. The gain and phase recovery responses are calculated when an ultrashort pump pulse is injected into a QD SOA. As the inhomogeneous broadening increases, the slow component of the phase recovery at the QD ground state increases due to the enlarged contribution from the slow phase recovery of carrier reservoirs such as the QD excited states. By separately calculating the gain and phase recovery responses of the homogeneous QDs with different sizes, we identify how increasing inhomogeneous broadening affects the enlarged slow phase recovery components from carrier reservoirs. We also demonstrate that the effect of inhomogeneous broadening on the temporal variation of the α-factor is more significant compared to the injection pump power.

Published in:

IEEE Journal of Quantum Electronics  (Volume:46 ,  Issue: 11 )