By Topic

Inverse-Quantum-Engineering: A New Methodology for Designing Quantum Cascade Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Waldmueller, I. ; Sandia Nat. Labs., Albuquerque, NM, USA ; Wanke, M.C. ; Lerttamrab, M. ; Allen, D.G.
more authors

Bandstructure engineering has enabled a broad array of semiconductor heterostructure devices, such as quantum cascade lasers, whose performance is governed by a broad parameter space involving intertwined physical properties. Using present methods it is challenging if not impossible to design structures that isolate a specific physical property that directly correlates with experimental results. To overcome this problem, we developed a new methodology, inverse quantum engineering (IQE), which employs an evolutionary algorithm to design families of structures with everything identical except for a specific physical property of our choosing. We show that IQE allows creation of model families of designs that isolate targeted experimental effects, thus allowing direct investigation of specific physical mechanisms and their often complicated and counter-intuitive interplay.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 10 )