By Topic

Human detection using Histogram of oriented gradients and Human body ratio estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lee, K. ; Fac. of Inf. & Commun. Technol., Univ. Tunku Abdul Rahman (UTAR), Malaysia ; Che Yon Choo ; Hui Qing See ; Zhuan Jiang Tan
more authors

Recent research has been devoted to detecting people in images and videos. In this paper, a human detection method based on Histogram of Oriented Gradients (HoG) features and human body ratio estimation is presented. We utilized the discriminative power of HoG features for human detection, and implemented motion detection and local regions sliding window classifier, to obtain a rich descriptor set. Our human detection system consists of two stages. The initial stage involves image preprocessing and image segmentation, whereas the second stage classifies the integral image as human or non-human using human body ratio estimation, local region sliding window method and HoG Human Descriptor. Subsequently, it increases the detection rate and reduces the false alarm by deducting the overlapping window. In our experiments, DaimlerChrysler pedestrian benchmark data set is used to train a standard descriptor and the results showed an overall detection rate of 80% above.

Published in:

Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on  (Volume:4 )

Date of Conference:

9-11 July 2010