By Topic

Central difference Gaussian Particle filter for initial alignment of strapdown inertial navigation system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shoucai Sun ; Beijing Inst. of Technol., Beijing, China ; Chunlei Song ; Junhou Wang ; Xingtai Yao
more authors

The error model of the initial alignment of the marine strapdown inertial navigation system is nonlinear, while the azimuth angle error is large on the swaying base. For this nonlinear model, a new nonlinear filter called as the central difference Gaussian Particle filter is proposed, which is based on the central difference Kalman filter and the Gaussian Particle filter. The central difference Kalman filter is used to calculate the estimate value and the covariance matrix in the observation update for the distribution function, which is sampled as the importance density function for the Gaussian Particle filter. The simulation results demonstrate the novel filter has better estimation performance than the unscented Kalman filter and the Gaussian Particle filter for the initial alignment.

Published in:

Intelligent Control and Information Processing (ICICIP), 2010 International Conference on

Date of Conference:

13-15 Aug. 2010