Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Development of a library of low-loss silicon-on-insulator optoelectronic devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tang, C.K. ; Dept. of Electron. & Electr. Eng., Surrey Univ., Guildford, UK ; Kewell, A.K. ; Reed, G.T. ; Rickman, A.G.
more authors

Established silicon microelectronics fabrication methods can be exploited to fabricate low-loss silicon integrated optical devices of dimensions which are compatible with single mode fibres and operate at the important wavelengths of 1.3 and 1.5 μm. Recent advances at the University of Surrey, where research effort in this field has been to develop a library of optoelectronic components, is highlighted. So far, rib and planar waveguides, including bends and Y-junctions, have been produced, together with design and fabrication of efficient optical modulators based on the plasma dispersion effect. Within the experimental error, the waveguide losses are indistinguishable from the intrinsic absorption loss of pure silicon. The figure of merit for the modulators is greater than 200°/V/mm and the operating current is 7 mA, which improves on previous devices by approximately an order of magnitude

Published in:

Optoelectronics, IEE Proceedings -  (Volume:143 ,  Issue: 5 )