By Topic

Probabilistic Topic Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Blei, D. ; Comput. Sci., Princeton Univ., Princeton, NJ, USA ; Carin, L. ; Dunson, D.

In this article, we review probabilistic topic models: graphical models that can be used to summarize a large collection of documents with a smaller number of distributions over words. Those distributions are called "topics" because, when fit to data, they capture the salient themes that run through the collection. We describe both finite-dimensional parametric topic models and their Bayesian nonparametric counterparts, which are based on the hierarchical Dirichlet process (HDP). We discuss two extensions of topic models to time-series data-one that lets the topics slowly change over time and one that lets the assumed prevalence of the topics change. Finally, we illustrate the application of topic models to nontext data, summarizing some recent research results in image analysis.

Published in:

Signal Processing Magazine, IEEE  (Volume:27 ,  Issue: 6 )