We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Joint Source and Channel Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The objectives of this article are two-fold: First, to present the problem of joint source and channel (JSC) coding from a graphical model perspective and second, to propose a structure that uses a new graphical model for jointly encoding and decoding a redundant source. In the first part of the article, relevant contributions to JSC coding, ranging from the Slepian-Wolf problem to joint decoding of variable length codes with state-of-the-art source codes, are reviewed and summarized. In the second part, a double low-density parity-check (LDPC) code for JSC coding is proposed. The double LDPC code can be decoded as a single bipartite graph using standard belief propagation (BP) and its limiting performance is analyzed by using extrinsic information transfer (EXIT) chart approximations.

Published in:

Signal Processing Magazine, IEEE  (Volume:27 ,  Issue: 6 )