By Topic

Variational Bayesian Inference Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matthias W. Seeger ; He was a research associate at the University of California at Berkeley (2003–2005) and at the Max Planck Institute, Tübingen, Germany (2005–2008). ; David P. Wipf

Milestones in sparse signal reconstruction and compressive sensing can be understood in a probabilistic Bayesian context, fusing underdetermined measurements with knowledge about low-level signal properties in the posterior distribution, which is maximized for point estimation. We review recent progress to advance beyond this setting. If the posterior is used as a distribution to be integrated over instead of merely an optimization criterion, sparse estimators with better properties may be obtained, and applications beyond point reconstruction from fixed data can be served. We describe novel variational relaxations of Bayesian integration, characterized as well as posterior maximization, which can be solved robustly for very large models by algorithms unifying convex reconstruction and Bayesian graphical model technology. They excel in difficult real-world imaging problems where posterior maximization performance is often unsatisfactory.

Published in:

IEEE Signal Processing Magazine  (Volume:27 ,  Issue: 6 )