By Topic

Automatic Detection of Social Tag Spams Using a Text Mining Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hsin-Chang Yang ; Dept. of Inf. Manage., Nat. Univ. of Kaohsiung, Kaohsiung, Taiwan ; Chung-Hong Lee

Social tags are annotations for Web pages collaboratively added by users. It will be much easier to understand the meaning of Web pages and classify them according to their tags. The precision in retrieving Web pages may also increase using such tags. Nowadays social tags are mostly annotated manually by users via social bookmarking Web sites. Such manual annotation process may produce diverse, redundant, and inconsistent tags. Besides, many tags which are inconsistent with their annotated Web pages exist and deteriorate the feasibility of social tags. In this work we will develop an automatic scheme to discover the associations between Web pages and social tags and apply such associations on applications of social tag spam detection. We applied a text mining approach based on self-organizing maps to find the relationships between Web pages and social tags. The disadvantages of manual annotation will be remedied through such relationships. The discovered associations were then used to identify social tag spams. Preliminary experiments show that the quality and usability of social tags were improved through this method.

Published in:

Advances in Social Networks Analysis and Mining (ASONAM), 2010 International Conference on

Date of Conference:

9-11 Aug. 2010