By Topic

Identifying Themes in Social Media and Detecting Sentiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Recently, a huge wave of social media has generated significant impact in people's perceptions about technological domains. They are captured in several blogs/forums, where the themes relate to products of several companies. One of the companies can be interested to track them as resources for customer perceptions and detect user sentiments. The keyword-based approaches for identifying such themes fail to give satisfactory level of accuracy. Here, we address the above problems using statistical text-mining of blog entries. The crux of the analysis lies in mining quantitative information from textual entries. Once the relevant blog entries for the company/its competitors are filtered out, the theme identification is performed using a highly accurate novel technique termed as 'Best Separators Algorithm'. Logistic regression coupled with dimension reduction technique (singular value decomposition) is used to identify the tonality of those blogs. The final analysis shows significant improvement in terms of accuracy over popular approaches.

Published in:

Advances in Social Networks Analysis and Mining (ASONAM), 2010 International Conference on

Date of Conference:

9-11 Aug. 2010