By Topic

Making DRAM Refresh Predictable

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhat, B. ; NC State Univ., Raleigh, NC, USA ; Mueller, F.

Embedded control systems with hard real-time constraints require that deadlines are met at all times or the system may malfunction with potentially catastrophic consequences. Schedulability theory can assure deadlines for a given task set when periods and worst-case execution times (WCETs) of tasks are known. While periods are generally derived from the problem specification, a task's code needs to be statically analyzed to derive safe and tight bounds on its WCET. Such static timing analysis abstracts from program input and considers loop bounds and architectural features, such as pipelining and caching. However, unpredictability due to dynamic memory (DRAM) refresh cannot be accounted for by such analysis, which limits its applicability to systems with static memory (SRAM). In this paper, we assess the impact of DRAM refresh on task execution times and demonstrate how predictability is adversely affected leading to unsafe hard real-time system design. We subsequently contribute a novel and effective approach to overcome this problem through software-initiated DRAM refresh. We develop (1) a pure software and(2) a hybrid hardware/software refresh scheme. Both schemes provide predictable timings and fully replace the classical hardware auto-refresh. We discuss implementation details based on this design for multiple concrete embedded platforms and experimentally assess the benefits of different schemes on these platforms. The resulting predictable execution behavior in the presence of DRAM refresh combined with the additional benefit of reduced access delays is unprecedented, to the best of our knowledge.

Published in:

Real-Time Systems (ECRTS), 2010 22nd Euromicro Conference on

Date of Conference:

6-9 July 2010