By Topic

Programming finite-difference time-domain for graphics processor units using compute unified device architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Demir, V. ; Dept. of Electr. Eng., Northern Illinois Univ., DeKalb, IL, USA ; Elsherbeni, A.Z.

Recently graphic processing units (GPU's) have become the hardware platforms to perform high performance scientific computing them. The unavailability of high level languages to program graphics cards had prevented the widespread use of GPUs. Relatively recently Compute Unified Device Architecture (CUDA) development environment has been introduced by NVIDIA and made GPU programming much easier. This contribution presents an implementation of finite-difference time-domain (FDTD) method using CUDA. A thread-to-cell mapping algorithm is presented and performance of this algorithm is provided.

Published in:

Antennas and Propagation Society International Symposium (APSURSI), 2010 IEEE

Date of Conference:

11-17 July 2010