We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Arabic speech recognition using Hidden Markov Model Toolkit(HTK)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Al-Qatab, B.A.Q. ; Software Eng. Dept., Univ. Of Malaya, Kuala Lumpur, Malaysia ; Ainon, R.N.

In this paper we discuss the development and implementation of an Arabic automatic speech recognition engine. The engine can recognize both continuous speech and isolated words. The system was developed using the Hidden Markov Model Toolkit. First, an Arabic dictionary was built by composing the words to its phones. Next, Mel Frequency Cepstral Coefficients (MFCC) of the speech samples are derived to extract the speech feature vectors. Then, the training of the engine based on triphones is developed to estimate the parameters for a Hidden Markov Model. To test the engine, the database consisting of speech utterance from thirteen Arabian native speakers is used which is divided into ten speaker-dependent and three speaker-independent samples. The experimental results showed that the overall system performance was 90.62%, 98.01 % and 97.99% for sentence correction, word correction and word accuracy respectively.

Published in:

Information Technology (ITSim), 2010 International Symposium in  (Volume:2 )

Date of Conference:

15-17 June 2010