Cart (Loading....) | Create Account
Close category search window
 

Empirical quantizer design in the presence of source noise or channel noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Linder, T. ; Dept. of Math. & Comput. Sci., Tech. Univ. Budapest, Hungary ; Lugosi, G. ; Zeger, K.

The problem of vector quantizer empirical design for noisy channels or for noisy sources is studied. It is shown that the average squared distortion of a vector quantizer designed optimally from observing clean independent and identically distributed (i.i.d.) training vectors converges in expectation, as the training set size grows, to the minimum possible mean-squared error obtainable for quantizing the clean source and transmitting across a discrete memoryless noisy channel. Similarly, it is shown that if the source is corrupted by additive noise, then the average squared distortion of a vector quantizer designed optimally from observing i.i.d. noisy training vectors converges in expectation, as the training set size grows, to the minimum possible mean-squared error obtainable for quantizing the noisy source and transmitting across a noiseless channel. Rates of convergence are also provided

Published in:

Information Theory, IEEE Transactions on  (Volume:43 ,  Issue: 2 )

Date of Publication:

Mar 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.