By Topic

Weakly convergent nonparametric forecasting of stationary time series

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Morvai, G. ; Hungarian Acad. of Sci., Budapest, Hungary ; Yakowitz, S. ; Algoet, P.

The conditional distribution of the next outcome given the infinite past of a stationary process can be inferred from finite but growing segments of the past. Several schemes are known for constructing pointwise consistent estimates, but they all demand prohibitive amounts of input data. We consider real-valued time series and construct conditional distribution estimates that make much more efficient use of the input data. The estimates are consistent in a weak sense, and the question whether they are pointwise-consistent is still open. For finite-alphabet processes one may rely on a universal data compression scheme like the Lempel-Ziv (1978) algorithm to construct conditional probability mass function estimates that are consistent in expected information divergence. Consistency in this strong sense cannot be attained in a universal sense for all stationary processes with values in an infinite alphabet, but weak consistency can. Some applications of the estimates to on-line forecasting, regression, and classification are discussed

Published in:

Information Theory, IEEE Transactions on  (Volume:43 ,  Issue: 2 )