By Topic

On the Approximate Solution of a Class of Large Discrete Quadratic Programming Problems by \Delta \Sigma Modulation: The Case of Circulant Quadratic Forms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Callegari, S. ; Dept. of Electron., Comput. Sci. & Syst. (DEIS), Univ. of Bologna, Bologna, Italy ; Bizzarri, F. ; Rovatti, R. ; Setti, G.

We show that ΔΣ modulators can be interpreted as heuristic solvers for a particular class of optimization problems. Then, we exploit this theoretical result to propose a novel technique to deal with very large unconstrained discrete quadratic programming (UDQP) problems characterized by quadratic forms entailing a circulant matrix. The result is a circuit-based optimization approach involving a recast of the original problem into signal processing specifications, then tackled by the systematic design of an electronic system. This is reminiscent of analog computing, where untreatable differential equations were solved by designing electronic circuits analog to them. The approach can return high quality suboptimal solutions even when many hundreds of variables are considered and proved faster than conventional empirical optimization techniques. Detailed examples taken from two different domains illustrate that the range of manageable problems is large enough to cover practical applications.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 12 )