By Topic

Modeling of a Streamer Plasma Reactor Energized by a Pulse Compression Modulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wolf, M. ; Propulsion Phys. Lab., Soreq NRC, Yavne, Israel ; Yankelevich, Y. ; Pokryvailo, A. ; Baksht, R.B.
more authors

This paper presents a semi-empirical model for a wire-wire corona reactor driven by a capacitive storage solid-state pulse generator. The reactor electrode system is configured as a checker mesh of potential and grounded threaded electrodes, and the pulse generator is based on a modern magnetic pulse compression topology. This presentation considers the effect of the geometrical parameters of the reactor (the total length of the high-voltage electrode surrounded by its grounded counterparts and the gap between the high-voltage and grounded electrodes) on the operation of the atmospheric pressure streamer plasma system. The model analyzes the discharge processes in the reactor by distinguishing between four phases, each being represented by an equivalent circuit: before the streamer generation, during the primary streamer propagation, after the primary streamers have crossed the interelectrode gaps, and after the plasma conductivity quenching. The new reactor model is realized on the PSpice platform, and the simulations are done using an improved pulse modulator model. The simulation results are compared with the experimental data, showing the model validity. Based on the simulated model, a better matching between the wire-to-wire reactor load to the pulse generator may be achieved.

Published in:

Plasma Science, IEEE Transactions on  (Volume:38 ,  Issue: 10 )