By Topic

High-Efficiency MOSFET Inverter with H6-Type Configuration for Photovoltaic Nonisolated AC-Module Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wensong Yu ; Bradley Dept. of Electr. & Comput. Eng., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Jih-Sheng Lai ; Hao Qian ; Hutchens, C.

A novel, high-efficiency inverter using MOSFETs for all active switches is presented for photovoltaic, nonisolated, ac-module applications. The proposed H6-type configuration features high efficiency over a wide load range, low ground leakage current, no need for split capacitors, and low-output ac-current distortion. The detailed power stage operating principles, pulsewidth modulation scheme, associated multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter are described. Experimental results of a 300 W hardware prototype show that not only are MOSFET body diode reverse-recovery and ground leakage current issues alleviated in the proposed inverter, but also that 98.3% maximum efficiency and 98.1% European Union efficiency of the dc-ac power train and the associated driver circuit are achieved.

Published in:

Power Electronics, IEEE Transactions on  (Volume:26 ,  Issue: 4 )